dc.contributor | Lima-Santos, Antonio | |
dc.contributor | http://lattes.cnpq.br/8463237728503334 | |
dc.contributor | http://lattes.cnpq.br/6112869741712049 | |
dc.creator | Sousa, Poliane Lima de | |
dc.date.accessioned | 2016-09-26T20:40:52Z | |
dc.date.available | 2016-09-26T20:40:52Z | |
dc.date.created | 2016-09-26T20:40:52Z | |
dc.date.issued | 2015-04-24 | |
dc.identifier | SOUSA, Poliane Lima de. Simetria de Lie de uma equação KdV com dispersão não-linear. 2015. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7461. | |
dc.identifier | https://repositorio.ufscar.br/handle/ufscar/7461 | |
dc.description.abstract | The Rosenau-Hyman, or K(m, n), equations are a generalized version of the Korteweg-de
Vries (KdV) equation where the dipersive term is non-linear. Such partial differential
equations not always have a specific method by which can be solved, besides the solutions
are not always analytical. The Lie symmetry method was applied to look for solutions of
these equations. This method consists in finding the most general symmetry group of the
equation, wherewith the solution can be found. It was found an expression to the solution
and to some particular cases. It was shown that in the case K(2, 2) a new kind of solution,
called compacton, with peculiar properties is found. | |
dc.language | por | |
dc.publisher | Universidade Federal de São Carlos | |
dc.publisher | UFSCar | |
dc.publisher | Programa de Pós-Graduação em Física - PPGF | |
dc.publisher | Câmpus São Carlos | |
dc.rights | Acesso aberto | |
dc.subject | Equações diferenciais parciais não-lineares | |
dc.subject | Simetria de Lie | |
dc.subject | Non-linear partial differential equation | |
dc.subject | Lie symmetry | |
dc.subject | Compactons | |
dc.title | Simetria de Lie de uma equação KdV com dispersão não-linear | |
dc.type | Tesis | |