dc.contributorLima-Santos, Antonio
dc.contributorhttp://lattes.cnpq.br/8463237728503334
dc.contributorhttp://lattes.cnpq.br/6112869741712049
dc.creatorSousa, Poliane Lima de
dc.date.accessioned2016-09-26T20:40:52Z
dc.date.available2016-09-26T20:40:52Z
dc.date.created2016-09-26T20:40:52Z
dc.date.issued2015-04-24
dc.identifierSOUSA, Poliane Lima de. Simetria de Lie de uma equação KdV com dispersão não-linear. 2015. Dissertação (Mestrado em Física) – Universidade Federal de São Carlos, São Carlos, 2015. Disponível em: https://repositorio.ufscar.br/handle/ufscar/7461.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/7461
dc.description.abstractThe Rosenau-Hyman, or K(m, n), equations are a generalized version of the Korteweg-de Vries (KdV) equation where the dipersive term is non-linear. Such partial differential equations not always have a specific method by which can be solved, besides the solutions are not always analytical. The Lie symmetry method was applied to look for solutions of these equations. This method consists in finding the most general symmetry group of the equation, wherewith the solution can be found. It was found an expression to the solution and to some particular cases. It was shown that in the case K(2, 2) a new kind of solution, called compacton, with peculiar properties is found.
dc.languagepor
dc.publisherUniversidade Federal de São Carlos
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Física - PPGF
dc.publisherCâmpus São Carlos
dc.rightsAcesso aberto
dc.subjectEquações diferenciais parciais não-lineares
dc.subjectSimetria de Lie
dc.subjectNon-linear partial differential equation
dc.subjectLie symmetry
dc.subjectCompactons
dc.titleSimetria de Lie de uma equação KdV com dispersão não-linear
dc.typeTesis


Este ítem pertenece a la siguiente institución