Tesis
Recobrimentos ramificados entre superfícies e dessins d'enfants
Fecha
2012-03-19Registro en:
PANZARIN, Karen Regina. Recobrimentos ramificados entre superfícies e dessins d enfants. 2012. 64 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, Mestre em Matemática, 2012.
Autor
Panzarin, Karen Regina
Institución
Resumen
Given closed connected surfaces X and Y, integers n > 0 and d > 2, and for i = 1,..., n partitions (dy)j=i,...,mi of d. The 5-tuple (X, Y, n, d, (dij)) is called the branch datum of a candidate branched covering. Many works discuss when a given branch datum can be realized by a branched covering / : X > Y of degree d, with n branching points and local degree in the pre-images of branching points given by dij. Hurwitz has established an algebraic equivalence to this geometric problem, this equivalence has been used to treat the subject. In this dissertation we define dessin d'enfant, a graph on the surface X, related to a branched covering and use this tool to obtain conditions for a given branch datum be exceptional (i.e. can not be realized). We also define an alternative and more explicit version for the definition of dessin d'enfant.