dc.contributorVendrúscolo, Daniel
dc.contributorhttp://lattes.cnpq.br/8602232587914830
dc.contributorhttp://lattes.cnpq.br/3082816481278839
dc.creatorPanzarin, Karen Regina
dc.date.accessioned2012-05-11
dc.date.accessioned2016-06-02T20:28:27Z
dc.date.available2012-05-11
dc.date.available2016-06-02T20:28:27Z
dc.date.created2012-05-11
dc.date.created2016-06-02T20:28:27Z
dc.date.issued2012-03-19
dc.identifierPANZARIN, Karen Regina. Recobrimentos ramificados entre superfícies e dessins d enfants. 2012. 64 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, Mestre em Matemática, 2012.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/5882
dc.description.abstractGiven closed connected surfaces X and Y, integers n > 0 and d > 2, and for i = 1,..., n partitions (dy)j=i,...,mi of d. The 5-tuple (X, Y, n, d, (dij)) is called the branch datum of a candidate branched covering. Many works discuss when a given branch datum can be realized by a branched covering / : X > Y of degree d, with n branching points and local degree in the pre-images of branching points given by dij. Hurwitz has established an algebraic equivalence to this geometric problem, this equivalence has been used to treat the subject. In this dissertation we define dessin d'enfant, a graph on the surface X, related to a branched covering and use this tool to obtain conditions for a given branch datum be exceptional (i.e. can not be realized). We also define an alternative and more explicit version for the definition of dessin d'enfant.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Matemática - PPGM
dc.rightsAcesso Aberto
dc.subjectTopologia
dc.subjectRecobrimento ramificado
dc.subjectSuperfícies (Matemática)
dc.titleRecobrimentos ramificados entre superfícies e dessins d'enfants
dc.typeTesis


Este ítem pertenece a la siguiente institución