Tesis
Aprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse
Date
2009-06-29Registration in:
TUMA, Carlos Cesar Mansur. Aprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse. 2009. 147 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
Author
Tuma, Carlos Cesar Mansur
Institutions
Abstract
This master thesis describes an intelligent classifier system applied to multiclass non-linearly separable problems called Slicer. The system adopts a low computacional cost supervised learning strategy (evaluated as ) based on linear separability. During the learning period the system determines a set of hyperplanes associated to oneclass regions (sub-spaces). In classification tasks the classifier system uses the hyperplanes as a set of if-then-else rules to infer the class of the input attribute vector (non classified object). Among other characteristics, the intelligent classifier system is able to: deal with missing attribute values examples; reject noise examples during learning; adjust hyperplane parameters to improve the definition of the one-class regions; and eliminate redundant rules. The fuzzy theory is considered to design a hybrid version with features such as approximate reasoning and parallel inference computation. Different classification methods and benchmarks are considered for evaluation. The classifier system Slicer reaches acceptable results in terms of accuracy, justifying future investigation effort.