dc.contributorFigueiredo, Maurício Fernandes
dc.contributorhttp://lattes.cnpq.br/4514898499279696
dc.contributorhttp://lattes.cnpq.br/0916152883066962
dc.creatorTuma, Carlos Cesar Mansur
dc.date.accessioned2009-10-20
dc.date.accessioned2016-06-02T19:05:36Z
dc.date.available2009-10-20
dc.date.available2016-06-02T19:05:36Z
dc.date.created2009-10-20
dc.date.created2016-06-02T19:05:36Z
dc.date.issued2009-06-29
dc.identifierTUMA, Carlos Cesar Mansur. Aprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse. 2009. 147 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de São Carlos, São Carlos, 2009.
dc.identifierhttps://repositorio.ufscar.br/handle/ufscar/407
dc.description.abstractThis master thesis describes an intelligent classifier system applied to multiclass non-linearly separable problems called Slicer. The system adopts a low computacional cost supervised learning strategy (evaluated as ) based on linear separability. During the learning period the system determines a set of hyperplanes associated to oneclass regions (sub-spaces). In classification tasks the classifier system uses the hyperplanes as a set of if-then-else rules to infer the class of the input attribute vector (non classified object). Among other characteristics, the intelligent classifier system is able to: deal with missing attribute values examples; reject noise examples during learning; adjust hyperplane parameters to improve the definition of the one-class regions; and eliminate redundant rules. The fuzzy theory is considered to design a hybrid version with features such as approximate reasoning and parallel inference computation. Different classification methods and benchmarks are considered for evaluation. The classifier system Slicer reaches acceptable results in terms of accuracy, justifying future investigation effort.
dc.publisherUniversidade Federal de São Carlos
dc.publisherBR
dc.publisherUFSCar
dc.publisherPrograma de Pós-Graduação em Ciência da Computação - PPGCC
dc.rightsAcesso Aberto
dc.subjectInteligência artificial
dc.subjectAprendizagem de máquina
dc.subjectClassificação
dc.subjectMétodo geométrico de classificação
dc.subjectSistema classificador nebuloso
dc.subjectSeparabilidade linear
dc.subjectLinear separability
dc.subjectMulticlass non-linear problems
dc.subjectMachine learning
dc.subjectGeometric classification method
dc.subjectFuzzy classifier system
dc.titleAprendizado de máquina baseado em separabilidade linear em sistema de classificação híbrido-nebuloso aplicado a problemas multiclasse
dc.typeTesis


Este ítem pertenece a la siguiente institución