dc.contributorBaierle, Rogério José
dc.contributorhttp://lattes.cnpq.br/7565203547830128
dc.contributorRupp, Caroline Jaskulski
dc.contributorhttp://lattes.cnpq.br/2244372613117182
dc.contributorSilva, Ricardo Barreto da
dc.contributorhttp://lattes.cnpq.br/8538297526477728
dc.creatorVargas, Douglas Willian Duarte de
dc.date.accessioned2019-05-07T14:49:21Z
dc.date.accessioned2019-05-24T20:55:40Z
dc.date.available2019-05-07T14:49:21Z
dc.date.available2019-05-24T20:55:40Z
dc.date.created2019-05-07T14:49:21Z
dc.date.issued2018-08-02
dc.identifierhttp://repositorio.ufsm.br/handle/1/16428
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2844530
dc.description.abstractIn this work we study two dimensional materials compounds of group IV elements such as graphene, silicene and germanene under biaxial and uniaxial strain. The aim of this study is understand the mechanical properties of these materials and how the strain modify their electronic properties. Using the density functional theory as implemented in the Quantum ESPRESSO (QE) package, we determined the Lamé coefficients and using its coefficients we calculated the elastic constants C11 and C12. The Young modulus in two dimension and the Poisson ratio was obtained via uniaxial strain in two directions: armchair and zigzag. Using the Voigt approximattion we estimated the Bulk modulus and the Shear modulus. All of those values are in good agreement with the literature where graphene is characterized as a stiffness material. We analyzed the stress-strain relation for all of three materials in the elastic region, where was observed an asymmetric behavior in ultimate tensile strength, where the armchair direction is the more stiff. The electronic properties was analyzed under uniaxial strain in three regions: linear (" = 0; 03), harmonic (" = 0; 09), and near to ultimate tensile strength (" = 0; 15). Graphene under strain does not show significant changes in its electronic properties. On the other hand, silicene and germanene show the autodopping behavior, where electrons (tipe n conductivity) or/and holes (tipe p conductivity) appear near to the Fermi level, in the vicinity of the Dirac cone greater than 9%. This way, we showed that strain can control the conductivity properties of silicene and germanene.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherFísica
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Física
dc.publisherCentro de Ciências Naturais e Exatas
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectEstrutura eletrônica
dc.subjectDFT
dc.subjectConstantes elásticas
dc.subjectCoeficientes de Lamé
dc.subjectMódulo de Young
dc.subjectRazão de Poisson
dc.subjectTensão-deformação
dc.subjectGrafeno
dc.subjectSiliceno
dc.subjectGermaneno
dc.subjectElectronic structure
dc.subjectElastic constants
dc.subjectLamé coefficients
dc.subjectYoung modulus
dc.subjectPoisson ratio
dc.subjectStress-strain
dc.subjectGraphene
dc.subjectSilicene
dc.subjectGermanene
dc.titleEstudo teórico das propriedades mecânicas e eletrônicas de sistemas bidimensionais do grupo IV sob deformações
dc.typeTesis


Este ítem pertenece a la siguiente institución