Tesis
Reconhecimento não-intrusivo de equipamentos elétricos empregando projeção vetorial
Fecha
2016-02-19Registro en:
BORIN, Vinicius Pozzobon. Non-intrusive electrical appliances recognition using vector
projection. 2016. 158 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.
Autor
Borin, Vinicius Pozzobon
Institución
Resumen
Electricity consumption in homes and workplaces has been growing steadily over the
decades and attitudes to reduce these costs should be taken. An interesting solution is to provide
to electricity users, and also to the energy company, detailed data of individual consumption of
each electrical appliance. To accomplish this, researchers in the field have focused their efforts
on non-intrusive methods of load identification, where a single energy meter is able to
desagreggate the appliances by monitoring the total consumption of electricity of that location.
Non-intrusive methods are easy to install and demand little maintenance, but require a
robust method for identifying these loads. Therefore, the aim of this work is to investigate nonintrusive
methods of recognition of electrical appliances to find the desaggregated consumption
of these loads. Among these methods, there are the already widely used image recognition
pattern methods, that now are been used also to detect electrical devices. In this paper, two of
these techniques are discussed, the Principal Component Analisys, a classical method in the literature,
and the Vector Projection Length, a completely new method and never used in the loads
recognition field before. Current and voltage data were collected from 16 residential appliances,
involving all types of loads (resistive, inductive, electronic and hybrid/other types). These data
were used as training samples and test samples (unknown samples). A study is carried out using
the current and also the power, independently, as load signatures. Also, a comparative analysis
of the results of signatures in the time domain and time-frequency (Stowkwell transform)
is conducted. As the main contributions to this work, we verified that the Vector Projection
Length for load identification is quite feasible, with results up to 96% of tested appliances being
identified. However, the results with Principal Component Analisys did not presented the same
performance, reaching only 81% of accuracy rate. Comparing the signatures, it became clear
that one should use the current in the time-frequency domain for better performance. Neither
the use of power, or the time domain obtained satisfactory results of load identification when
applying image pattern recognition techniques to load recognition.