Dissertação
Projeto e desenvolvimento de uma fonte de potência CA trifásica a quatro fios
Fecha
2006-04-06Registro en:
STEFANELLO, Márcio. Design and development of a three-phase four-wire AC power source. 2006. 109 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2006.
Autor
Stefanello, Márcio
Institución
Resumen
This work presents a contribution to the study of AC Power Sources, where a prototype s development is
presented. The stages that compose the system, including converter topology, filter, instrumentation and
controller, are presented. The developed prototype is a three-phase four-wire source, which uses a four-leg
voltage source inverter. This topology increases the flexibility for unbalanced waveforms generation or
unbalanced load conditions, also simplifying the control problem of the process. This work first looks for
justifying the use and the study of AC Power Sources, in this sense, some examples of tests and norms, whose
tests demand its use, are given. The applications are in general related to electrical and electronic equipments and
for driving electromechanical plants such as shakers. In this sense, AC Power Sources are equipment that can be
used both in industry applications and didactic or research laboratories. In practically all applications, it is shown
that good performance in waveforms generation is necessary. This performance is related to the ability for
waveforms generation with low harmonic distortion even in conditions of variable frequency or amplitude and
with nonlinear loads behavior. In this way, the use of an adequate converter topology is not enough, are too
necessary controllers to guarantee performance for the system, even in adverse load conditions or in presence of
unmodeled dynamics. The unmodeled dynamics are derived from some stages that compose the system, but they
are generally related to the uncertainties on the model of the plant and load. Then, this work not only describes
the implemented prototype and topological relative questions but also applies a Robust Model Reference
Adaptive Control (RMRAC) for the plant control. This technique improves the robustness in the closed loop
system even under presence of unmodeled dynamics and disturbances. The controller makes use of a Gradient
type algorithm for parametric adaptation with four adapted parameters, which leads to a new error equation that
is used for the controller s implementation