Dissertação
Monitoramento e modelagem matemática dos processos hidrossedimentológicos em bacias hidrográficas florestais no sul do Brasil
Fecha
2011-10-31Registro en:
RODRIGUES, Miriam Fernanda. MONITORING AND MODELING OF HIDROSSEDIMENTOLOGIC
PROCESSES IN FORESTRY WATERSHED IN SOUTHERN BRAZIL. 2011. 208 f. Dissertação (Mestrado em Recursos Florestais e Engenharia Florestal) - Universidade Federal de Santa Maria, Santa Maria, 2011.
Autor
Rodrigues, Miriam Fernanda
Institución
Resumen
The effect of eucalyptus forests in hidrossedimentologic processes has been little explored
by the scientific community, which results in a database containing information related to
these incipient effects, especially at the watershed scale. The monitoring and the
mathematical modeling are recognized as effective tools of science to supply the lack of
information, particularly in natural resource management, in the representation and
prediction of these processes. In this sense, the aim of this study was to describe the
monitoring data to assess effects of eucalyptus cultivation in the hidrossedimentological
processes, to calibrate the input parameters and to verify the potential application of the
Limburg Soil Erosion Model (LISEM) in the representation of watershed hydrological
processes embedded with forest cover. The study was conducted in two forest watersheds
located in Eldorado do Sul - RS, and the watershed has an area of 94.46 ha and drainage
sub-watershed, which is embedded in the amount and terms of the watershed, has a
drainage area of 38.86 ha. The hidrossedimentometrical monitoring began in February 2011
and was conducted within the limits of the watershed in two automatic sections, composed of
linigraph, turbidimeters and pluviographs. This work has included monitoring over a period of
six months from 02/16/2011 to 08/15/2011. The sediment yield was determined by
multiplying the data of sediment concentration and flow. The model LISEM was calibrated
from six different rain events. The model input parameters were obtained through surveys
conducted in the watershed and literature data. To evaluate the model ability in representing
the hydrological processes hydrographs measured in the watershed exutory were used. The
monitoring results demonstrated that periods with higher rainfall volume presented a
significant increase in peak flows in relation to the driest intervals, as well as an increase in
the suspended sediments concentration in the watershed and in the sub-watershed. The
events with greater rainfall intensity demonstrated that the smallest drainage area of the subwatershed
generated faster answers in flow and sediment concentration. For the watershed,
in most events occurred flood wave attenuation with least steeply sloping and lowest
hydrograph peaks than the sub-watershed. Specifically, the sediment yield was 38.41 and
33.65 t km-2, during the six months of monitoring for the watershed and for the subwatershed,
respectively. The magnitude of sediment yield was 0.77 t ha-1 yr-1 for the
watershed and 0.67 t ha-1 yr-1 for the sub-watershed. The LISEM model was able to
reproduce adequately the peak flow and direct runoff for the six events used for calibration.
On the other hand, the peak time and shape of the hydrograph did not have adequate fit.