dc.contributorGiacomini, Sandro José
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4794885J2
dc.contributorSilveira, Carlos Augusto Posser
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4761475H3
dc.contributorSouza, Eduardo Lorensi de
dc.contributorhttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4711989Z2
dc.creatorLeão, Ricardo Elso
dc.date.accessioned2017-04-10
dc.date.accessioned2019-05-24T20:20:23Z
dc.date.available2017-04-10
dc.date.available2019-05-24T20:20:23Z
dc.date.created2017-04-10
dc.date.issued2014-01-31
dc.identifierLEÃO, Ricardo Elso. Stabilization of crop residues carbon in soil with the use retorted oil shale. 2014. 45 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Santa Maria, Santa Maria, 2014.
dc.identifierhttp://repositorio.ufsm.br/handle/1/5590
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2840427
dc.description.abstractThe impact of retorted oil shale (ROS) addition on the dynamics of carbon (C) of crop residues (CR) in the soil is little known. Under laboratory conditions, the present study aimed to evaluate the residual and immediate effects of ROS on C mineralization of CR, water stability aggregates and storage C in the particulate (>53 μm) and associated minerals fractions (<53μm) of organic matter (OM) of a Hapludalf. In experiment 1, treatments consisted of soil samples from plots that received four additions of ROS, totaling 0, 6,000 and 12,000 kg ha-1. In experiment 2, treatments consisted of soil with no history of application of ROS (0 kg ha-1), that in the laboratory received three doses of ROS (0, 1,500 and 3,000 kg ha-1). In both experiments, the treatments were evaluated in the presence (3,000 kg ha-1) and absence of leaves and stalks of soybeans. The release of C-CO2 was evaluated for 80 days and at the end of the experiment determined the aggregate stability and C storage in different OM fractions. The addition of CR in soil with a history of ROS addition did not alter the release of C-CO2 and also did not reduce the apparent mineralization of C of RC compared to addition of these residues in soil with no history. In experiment 2, there was a reduction in the release of C-CO2 compared to the control only the treatment with stalks + 3000 kg ROS ha-1. In experiment 2, the treatment stalks + 3000 kg ROS ha-1 provided an increase in aggregate stability compared with treatment with only stalks. In experiment 1, the ROS addition tended to higher retention of C stalks and leaves in the soil. In experiment 2, the application of CR + ROS promoted greater retention of soil C only in the treatment with leaves. Under laboratory conditions, the soil with a history of ROS addition did not affect mineralization and retention of crop residue C added to soil. Besides, the ROS showed an immediate effect, reducing C mineralization from stalks and increasing retention of C from leaves added to the soil.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBR
dc.publisherAgronomia
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Ciência do Solo
dc.rightsAcesso Aberto
dc.subjectFolhelho pirobetuminoso
dc.subjectDecomposição
dc.subjectMineralização do carbono
dc.subjectAgregação do solo
dc.subjectFracionamento físico da matéria orgânica
dc.subjectOil shale
dc.subjectDecomposition
dc.subjectCarbon mineralization
dc.subjectSoil aggregation
dc.subjectPhysical fractionation of soil organic matter
dc.titleEstabilização do carbono de resíduos culturais no solo com o uso de xisto retortado
dc.typeTesis


Este ítem pertenece a la siguiente institución