Dissertação
Influência da hipóxia sobre parâmetros de estresse oxidativo e viabilidade mitocondrial de jundiás expostos ao manganês
Fecha
2012-02-01Registro en:
DOLCI, Geisa Sorezina. INFLUÊNCIA DA HIPÓXIA SOBRE PARÂMETROS DE ESTRESSE OXIDATIVO E VIABILIDADE MITOCONDRIAL DE JUNDIÁS EXPOSTOS AO MANGANÊS. 2012. 76 f. Dissertação (Mestrado em Farmácia) - Universidade Federal de Santa Maria, Santa Maria, 2012.
Autor
Dolci, Geisa Sorezina
Institución
Resumen
Metals environment aquatic contamination has been a growing problem with serious consequences to life of different species over time, even after interrupted their emission into the environment. Among relevance metals, manganese (Mn) has shown importance to be related to several activities such as oil exploration, coal deposits extraction, fertilizer use in agriculture, among others. In living organisms, Mn is an essential trace element for a number of vital functions, and involves energy regulation by blood clotting. On the other hand, high concentrations of Mn can cause irreversible damage to living organisms primarily affecting central nervous system (CNS). Thus, waterborne Mn toxicity can switch from aquatic species, while metal bioaccumulation in marine fish or freshwater has been found around 0.2 to 19.0 mg/kg dry weight. In this study, silver catfish (Rhamdia quelen) were exposed to different Mn concentrations (4.2; 8.4 e 16.2 mg/L), under two different dissolved oxygen levels, normoxia (7.48 ± 0.28) and hypoxia (3.88 ± 0.41) for 15 days. At the end of protocol, Mn bioaccumulation as well parameters of oxidative stress and mitochondrial viability were evaluated in different tissues. In hypoxic conditions, the highest Mn concentration (16.2 mg/L) showed the lowest silver catfish kidney and brain lipoperoxidation (LPO) levels, while brain reduced glutathione (GSH) levels were increased in lower Mn concentration (4.2 mg/L) and kidney catalase activity was reduced in the same metal concentration, in relation to normoxia. Lowest Mn concentration (4.2 mg/L) in hypoxia showed higher gills mitochondrial viability, compared to normoxia. Hematocrit of silver catfish exposed to two highest Mn concentration (8.4 and 16.2 mg/L) was reduced in normoxia conditions while under hypoxia, these values were similar to control. Plasma except, Mn bioaccumulation in liver, kidney and gills were higher in normoxia than hypoxia. From these results is possible to suggest that hypoxia stimulates the development of adaptive mechanisms and/or hormesis in silver catfish exposed to Mn, mainly because the lower metal bioaccumulation occurred in this oxygen level. Contributing with this, under hypoxia, oxidative damage indicators were lower than those observed in normoxia, which were accompanied by changes in antioxidant system represented by GSH and catalase. In conclusion, our results show in the first time that silver catfish exposed to Mn contamination is able to show a better survival under hypoxia. These findings indicate need for continuing studies in search of molecular mechanisms involved in the adaptation and or hormesis processes, which were suggested here.