Dissertação
Valiação da perda de transmissão sonora em paredes externas de light steel frame
Fecha
2014-12-11Registro en:
RADAVELLI, Graziella Ferrer. Evaluation of sound transmission loss in light steel frame external walls. 2014. 168 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Santa Maria, Santa Maria, 2014.
Autor
Radavelli, Graziella Ferrer
Institución
Resumen
Environmental noise at high levels and inappropriate construction techniques used in
conventional buildings in Brazil claim for a transition to better construction systems. Recently
the Brazilian standard NBR 15575:2013 established for the first time parameters and criteria
for residential building performance. In standard minimum requirements for sound insulation
are given, for example for external walls and roof structures. This way it is of fundamental
importance to have sound transmission loss data for diferente types of such elements at hand.
Taking into account that there is very little information on the sound transmission loss of
external walls of the light steel frame (LSF) type measurements of sound insulation of
different vertical external LSF walls typically used in Brazil were carried out. Eighteen
different LSF walls were mounted in the sound transmission measurement chamber of the
Federal University of Santa Maria and measurements were carried out in accordance with ISO
10140:2010. Sound insulation was characterized by means of the sound reduction index R, the
weighted sound reduction index Rw and the sound transmission class, making it possible to
compare the sound insulation of the LSF walls with data from the literature. The LSF walls
under investigation in this study used different materials such as OSB panels, cement boards,
plaster boards, Smartside panels, PVC panels, XPS panels and magnesium oxide boards for
the outer face. The influence of resilient channels and sponge tape, placed between the outer
face and the metalic studes, were also evaluated. The sound insulation of the diferente LSF
walls were found to be 43 dB ≤ Rw ≤ 50 dB and 45 dB ≤ STC ≤ 52 dB. Within the LSF walls
measured the one which used magnesium oxide boards on the outer face showed to have the
highest weight sound reduction index (Rw = 50 dB). Resilient channels, fabricated especially
for this study, and sponge tape were able to provide an increase of Rw and STC up to 5 dB
compared to the same wall without this resilient elements, and provide better sound insulation
especially for frequencies higher than 400 Hz. From the data it can be concluded that LSF
walls are more efficient regarding the sound insulation than single walls of the same surface
mass and in some cases even better than single walls of superior surface mass, such as walls
made of massive brick or concrete blocks.