Trabalho de Conclusão de Curso de Especialização
Modelos de regressão para o valor da produção de erva-mate no Rio Grande do Sul
Autor
Ribeiro, Tatiane Fontana
Institución
Resumen
Linear regressionmodelsthatsupposenormalresponsevariableswerewidelyuseduntil
more flexibletechniqueswereintroduced.Realsituationsareverycomplex,thusitisdifficult
that variablescomplywiththeassumptionsoftheclassiclinearmodel,likethenormalityof
the responsevariable.Alternativetechniqueswerethenproposed,like:thegeneralizedlinear
models (GLM)andgeneralizedadditivemodelsforlocation,scaleandshape(GAMLSS).GLM
main advantageinrelationtolinearmodel(LM)technique,becausetheresponsevariablecan
followanydistributionoftheexponentialfamily,besidesofthenormaldistribution.Itisalso
possible tomodelotherparametersofthedistributionbasedonthecovariables.Byconsidering
the relevanceofthepermanentcultureofyerbamatetotheeconomyRS,thequantityofpublic
statistics averableaboutthesubjectandthetechniquesofmodellingstatisticmentioned,theof
purpose ofthisstudyistoobtainaregressionmodeltoexplainthevariationoftheproduction
valueoftheyerbamateintheRS.ThedatasetwasobtainedfromFoundationofEconomyand
Statistics. Thisdatasethastheresponsevariable:productionvalueofyerbamateandquan-
titativecovariablesassociatedtoitsproductionandcommercializationin2016.Itisaddedto
data setqualitativecovariablesreferringtopolesandmicroregionsstudiedlikedummyvari-
ables. Thereafter,descriptivestatisticanalysisisdoneinordertoidentifythebehaviorofall
variables.Regressionmodelsareobtainedfromclassicaltechnique(LM)tothemoresophisti-
cated (GAMLSS).ItisnotedthattheGAMLSSmodelhadthebestfitaccordingwithmodels
selection criteriaandgraphicalanalysisoftheresiduals.FinalGAMLSSmodelatthe5%sig-
nificance levelthesignificantquantitativecovariableswere:quantityproduced,harvestedarea
and areaforharvesting.Thiscovariablespresentpositivecontributiontoresponsevariableac-
cording linearrelationshowedthroughthecorrelationanalysis.PoloPlanaltoMissõeswas
the onlysignificantanditpresentedpositiveeffecttoproductionvalue,becauseitissecond
largeststateproducer.Thesignificantmicrorregionswere:CaxiasdoSul,Erechim,Frederico
Westphalen,Gramado-Canela,Guaporé,Lajeado-Estrela,SantaCruzdoSul,SantaRosaeTrês
Passos.ExceptingGramado-Canelamicrorregion,theothersmicrorregionspresentednegative
effecttodependentvariable.