dc.contributorPansonato, Claudia Candida
dc.contributorhttp://lattes.cnpq.br/5048965212765046
dc.contributorAtique, Roberta Godoi Wik
dc.contributorhttp://lattes.cnpq.br/0344263307205627
dc.contributorBinotto, Rosane Rossato
dc.contributorRosane Rossato Binotto
dc.creatorWolf, Carla Andreia
dc.date.accessioned2014-02-26
dc.date.available2014-02-26
dc.date.created2014-02-26
dc.date.issued2013-03-19
dc.identifierWOLF, Carla Andreia. Vertex, focal curve and focal surface of space curves. 2013. 65 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Santa Maria, Santa Maria, 2013.
dc.identifierhttp://repositorio.ufsm.br/handle/1/9980
dc.description.abstractThe focal surface of a curve γ in the Euclidean 3-space is defined as the envelope of the normal planes of γ. The focal surface of γ is singular along a curve Cγ, called the focal curve or generalized evolute. This curve is given by the centers of the osculating spheres of γ. In this work we study the geometry of the focal surface, focusing on the properties of the focal curve. These concepts can be generalized for curves in Rm+1. The focal curve may be parametrized in terms of the Frenet frame of γ. Through this parametrization, we obtain coefficients called focal curvatures. It is then obtained a formula relating the Euclidean curvatures of γ with its focal curvatures. Defining a vertex of a curve in Rm+1 as a point at which the curve has at least (m+3)-point contact with its osculating hypersphere, we give necessary and sufficient conditions for a point of γ to be a vertex. In such points the focal surface is locally diffeomorphic to the swallowtail surface.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBR
dc.publisherMatemática
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Matemática
dc.rightsAcesso Aberto
dc.subjectVértices
dc.subjectCáustica
dc.subjectCurva focal
dc.subjectSingularidades
dc.subjectVertex
dc.subjectCaustic
dc.subjectFocal curve
dc.subjectSingularities
dc.titleVértices, curva focal e superfície focal de curvas no espaço
dc.typeDissertação


Este ítem pertenece a la siguiente institución