dc.contributorFachinetto, Roselei
dc.contributorhttp://lattes.cnpq.br/7203076675431306
dc.contributorÁvila, Daiana Silva de
dc.contributorhttp://lattes.cnpq.br/4355211015887363
dc.contributorWagner, Caroline
dc.contributorhttp://lattes.cnpq.br/4004565241849091
dc.contributorPuntel, Gustavo Orione
dc.contributorhttp://lattes.cnpq.br/0319301096075015
dc.contributorRosemberg, Denis Broock
dc.contributorhttp://lattes.cnpq.br/7713953979203056
dc.creatorReckziegel, Patrícia
dc.date.accessioned2015-10-21
dc.date.available2015-10-21
dc.date.created2015-10-21
dc.date.issued2015-01-16
dc.identifierRECKZIEGEL, Patrícia. BIOCHEMICAL AND MOLECULAR MECHANISMS INVOLVED IN BEHAVIORAL EFFECTS INDUCED BY RESERPINE IN RATS AND C. elegans WITH ENPHASIS IN OXIDATIVE AND DOPAMINERGIC PARAMETERS. 2015. 95 f. Tese (Doutorado em Farmácia) - Universidade Federal de Santa Maria, Santa Maria, 2015.
dc.identifierhttp://repositorio.ufsm.br/handle/1/3847
dc.description.abstractAnimal models as reserpine are helpful to understand the pathophysiology of several diseases with involuntary movements, as Parkinson s disease (PD), and to search efficient treatments. The present study tested the effects of reserpine on behavioral alterations induced by reserpine in rats and worms, with emphasis in oxidative and dopaminergic parameters, and the effect of the antioxidant gallic acid (GA) in reserpine-exposed rats. As result, reserpine (1mg/Kg, sc, for 3 consecutive days) increased the frequency of vacuous chewing movements (VCMs) in rats in relation to controls, and maintained this increase for at least 3 days after reserpine withdrawal. Treatment with GA (4.5 , 13.5 or 40.5 mg/kg/day, po) for 3 days reverted reserpine-induced increase in VCMs, showing protective effect. Neither reserpine nor GA changed oxidative parameters (TBARS and DCFH-DA oxidation), antioxidant levels (proteic and non-proteic thiol) and the activity of Na+,K+-ATPase (total and α-subunit) in striatum and cortex. Afterward, studies were performed with Caenorhanditis elegans due its several advantages in studies of neurodegeneration and of drugs mechanism of action. L1-larval stage C. elegans were exposed to reserpine (30 ou 60 μM) for different times. Reserpine decreased the survival, development, food intake, locomotor rate on food and dopamine (DA) levels in worms and it had effect on egg laying and defecation cycles. Morphological evaluations of dopaminergic cephalic (CEP) neurons in BY200 worms (with GFP coupled to dat-1 gene) reveled neurodegeneration by: 1) decreased fluorescence intensity, 2) decreased the number of intact neurons, and 3) increased the number of shrunken somas per worm. These effects were unrelated to reserpine s effect on dat-1 gene expression. Interestingly, the reserpine effects on locomotor rate, dopaminergic CEP neurons morphology and dat-1 gene expression were reverted after reserpine withdrawal. Furthermore, reserpine decreased the survival of vesicular monoamine transporter (VMAT) and dat-1 loss-of-function mutant worms, but no of tyrosine hydroxylase (TH, cat-2) and dopaminergic receptors (dop-1, dop-2, dop-3 e dop-4) loss-of-function mutants in relation to wild-type N2 worms. Reserpine also decreased the survival of worms pre-exposed to DA; and it activated SKN-1 detoxification pathway. Moreover, no differences were found in DAT and TH immunoreactivity in striatum of rats treated with reserpine and/or GA. The GA protective effects against reserpine-induced VCMs in rats are probably not related to its antioxidant and antiapoptotic properties or monoamine oxidase (MAO) inhibition. As conclusion, the reserpine decreases DA levels though action on VMAT, and it induces neurotoxicity/neurodegeneration due probably an increase on extracellular DA contents resulted from changes on DAT function. More studies evaluating the reserpine effect on DAT and the GA mechanism of protection are necessary.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBR
dc.publisherFarmacologia
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Farmacologia
dc.rightsAcesso Aberto
dc.subjectDiscinesia orofacial
dc.subjectDoença de Parkinson
dc.subjectDopamina
dc.subjectNeurodegeneração
dc.subjectReserpina
dc.subjectTransportador de dopamina
dc.subjectDopamine
dc.subjectDopamine transporter
dc.subjectNeurodegeneration
dc.subjectOrofacial dyskinesia
dc.subjectParkinson's disease
dc.subjectReserpine
dc.titleMecanismos bioquímicos e moleculares envolvidos em efeitos comportamentais induzidos por reserpina em ratos e C. elegans com ênfase em parâmetros oxidativos e dopaminérgicos
dc.typeTese


Este ítem pertenece a la siguiente institución