dc.contributorNunes, Raul Ceretta
dc.contributorhttp://lattes.cnpq.br/7947423722511295
dc.contributorKozakevicius, Alice de Jesus
dc.contributorhttp://lattes.cnpq.br/1143985671114403
dc.contributorSerra, Christian Emilio Schaerer
dc.contributorhttp://lattes.cnpq.br/6936288540200267
dc.contributorSantos, Osmar Marchi dos
dc.contributorhttp://lattes.cnpq.br/3867718775277531
dc.creatorMozzaquatro, Bruno Augusti
dc.date.accessioned2012-10-16
dc.date.available2012-10-16
dc.date.created2012-10-16
dc.date.issued2012-02-27
dc.identifierMOZZAQUATRO, Bruno Augusti. Applying two-dimensional wavelet transform for the detection of web attacks. 2012. 88 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Santa Maria, Santa Maria, 2012.
dc.identifierhttp://repositorio.ufsm.br/handle/1/5393
dc.description.abstractWith the increase web traffic of comes various threats to the security of web applications. The threats arise inherent vulnerabilities of web systems, where malicious code or content injection are the most exploited vulnerabilities in web attacks. The injection vulnerability allows the attacker to insert information or a program in improper places, causing damage to customers and organizations. Its property is to change the character frequency distribution of some requests within a set of web requests. Anomaly-based intrusion detection systems have been used to break these types of attacks, due to the diversity and complexity found in web attacks. In this context, this paper proposes a new anomaly based detection algorithm that apply the two-dimensional wavelet transform for the detection of web attacks. The algorithm eliminates the need for a training phase (which asks for reliable data) and searches for character frequency anomalies in a set of web requests, through the analysis in multiple directions and resolutions. The experiment results demonstrate the feasibility of our technique for detecting web attacks. After some adjustments on different parameters, the algorithm has obtained detection rates up to 100%, eliminating the occurrence of false positives.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBR
dc.publisherCiência da Computação
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Informática
dc.rightsAcesso Aberto
dc.subjectDetecção de anomalias
dc.subjectDetecção de intrusão
dc.subjectWavelet
dc.subjectAtaques web
dc.subjectAnomaly detection
dc.subjectIntrusion detection
dc.subjectWavelet
dc.subjectWeb attack
dc.titleAplicando a transformada wavelet bidimensional na detecção de ataques web
dc.typeDissertação


Este ítem pertenece a la siguiente institución