dc.contributorKozakevicius, Alice de Jesus
dc.contributorhttp://lattes.cnpq.br/1143985671114403
dc.contributorRodrigues, Cesar Ramos
dc.contributorhttp://lattes.cnpq.br/1751666562438251
dc.contributorSantos, Luis Carlos de Castro
dc.contributorhttp://lattes.cnpq.br/5181059029789860
dc.contributorBaratto, Giovani
dc.contributorhttp://lattes.cnpq.br/9054887406340022
dc.creatorSilveira, Tiago da
dc.date.accessioned2013-08-16
dc.date.available2013-08-16
dc.date.created2013-08-16
dc.date.issued2012-06-20
dc.identifierSILVEIRA, Tiago da. DROWSINESS DETECTION FROM A SINGLE ELECTROENCEPHALOGRAPHY CHANNEL THROUGH DISCRETE WAVELET TRANSFORM. 2012. 152 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Santa Maria, Santa Maria, 2012.
dc.identifierhttp://repositorio.ufsm.br/handle/1/5407
dc.description.abstractMany fatal traffic accidents are caused by fatigued and drowsy drivers. In this context, automatic drowsiness detection devices are an alternative to minimize this issue. In this work, two new methodologies to drowsiness detection are presented, considering a signal obtained from a single electroencephalography channel: (i) drowsiness detection through best m-term approximation, applied to the wavelet expansion of the analysed signal; (ii) drowsiness detection through Mahalanobis distance with wavelet coefficients. The results of both methodologies are compared with a method which uses Mahalanobis distance and Fourier coefficients to drowsiness detection. All methodologies consider the medical evaluation of the brain signal, given by the hypnogram, as a reference.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBR
dc.publisherCiência da Computação
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Informática
dc.rightsAcesso Aberto
dc.subjectSinal cerebral
dc.subjectSonolência
dc.subjectTransformada de Fourier
dc.subjectTransformada Wavelet
dc.subjectDetecção de sonolência
dc.subjectMelhor aproximação por m-termos
dc.subjectDistância de Mahalanobis
dc.subjectBrain signals
dc.subjectDrowsiness
dc.subjectFourier transform
dc.subjectWavelet transform
dc.subjectDrowsiness detection
dc.subjectBest m-term approximation
dc.subjectMahalanobis distance
dc.titleDetecção do estado de sonolência via um único canal de eletroencefalografia através da transformada wavelet discreta
dc.typeDissertação


Este ítem pertenece a la siguiente institución