dc.contributor | Kozakevicius, Alice de Jesus | |
dc.contributor | http://lattes.cnpq.br/1143985671114403 | |
dc.contributor | Rodrigues, Cesar Ramos | |
dc.contributor | http://lattes.cnpq.br/1751666562438251 | |
dc.contributor | Santos, Luis Carlos de Castro | |
dc.contributor | http://lattes.cnpq.br/5181059029789860 | |
dc.contributor | Baratto, Giovani | |
dc.contributor | http://lattes.cnpq.br/9054887406340022 | |
dc.creator | Silveira, Tiago da | |
dc.date.accessioned | 2013-08-16 | |
dc.date.available | 2013-08-16 | |
dc.date.created | 2013-08-16 | |
dc.date.issued | 2012-06-20 | |
dc.identifier | SILVEIRA, Tiago da. DROWSINESS DETECTION FROM A SINGLE ELECTROENCEPHALOGRAPHY CHANNEL THROUGH DISCRETE WAVELET TRANSFORM. 2012. 152 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Santa Maria, Santa Maria, 2012. | |
dc.identifier | http://repositorio.ufsm.br/handle/1/5407 | |
dc.description.abstract | Many fatal traffic accidents are caused by fatigued and drowsy drivers. In this context, automatic
drowsiness detection devices are an alternative to minimize this issue. In this work, two
new methodologies to drowsiness detection are presented, considering a signal obtained from
a single electroencephalography channel: (i) drowsiness detection through best m-term approximation,
applied to the wavelet expansion of the analysed signal; (ii) drowsiness detection
through Mahalanobis distance with wavelet coefficients. The results of both methodologies are
compared with a method which uses Mahalanobis distance and Fourier coefficients to drowsiness
detection. All methodologies consider the medical evaluation of the brain signal, given by
the hypnogram, as a reference. | |
dc.publisher | Universidade Federal de Santa Maria | |
dc.publisher | BR | |
dc.publisher | Ciência da Computação | |
dc.publisher | UFSM | |
dc.publisher | Programa de Pós-Graduação em Informática | |
dc.rights | Acesso Aberto | |
dc.subject | Sinal cerebral | |
dc.subject | Sonolência | |
dc.subject | Transformada de Fourier | |
dc.subject | Transformada Wavelet | |
dc.subject | Detecção de sonolência | |
dc.subject | Melhor aproximação por m-termos | |
dc.subject | Distância de Mahalanobis | |
dc.subject | Brain signals | |
dc.subject | Drowsiness | |
dc.subject | Fourier transform | |
dc.subject | Wavelet transform | |
dc.subject | Drowsiness detection | |
dc.subject | Best m-term approximation | |
dc.subject | Mahalanobis distance | |
dc.title | Detecção do estado de sonolência via um único canal de eletroencefalografia através da transformada wavelet discreta | |
dc.type | Dissertação | |