dc.contributorSantos, Carlos Raniery Paula dos
dc.contributorhttp://lattes.cnpq.br/0538173746410766
dc.contributorTurchetti, Rogério Correa
dc.contributorhttp://lattes.cnpq.br/1286016553991455
dc.contributorCordeiro, Weverton Luis da Costa
dc.contributorhttp://lattes.cnpq.br/0458322041606755
dc.creatorQuincozes, Silvio Ereno
dc.date.accessioned2018-10-23T20:46:32Z
dc.date.accessioned2019-05-24T19:16:17Z
dc.date.available2018-10-23T20:46:32Z
dc.date.available2019-05-24T19:16:17Z
dc.date.created2018-10-23T20:46:32Z
dc.date.issued2018-02-01
dc.identifierhttp://repositorio.ufsm.br/handle/1/14646
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2833019
dc.description.abstractIntrusion Detection Systems are common used for information analysis, that are collected from computer networks and computer systems. Through the use of techniques such as data classification, it is possible to identify malicious activities. However, the use of such technique presents a challenge that consists of choosing the ideal classifier against multiple possibilities of attacks. Existing efforts try to mitigate this problem with the use of multiple classifiers, however, this approach often introduces conflicts in decision making. In addition, there are cases where a source analyzed by a detector does not provide sufficient information for a precise decision. The objective of this work is the creation of an intrusion detection architecture through the dynamic selection of classifiers in council networks, where it is explored the consultation of counselors who analyzes multiple and heterogeneous data sources. Preliminary results show that the architecture is promising, resolving conflicts and increasing security in intrusion detection.
dc.publisherUniversidade Federal de Santa Maria
dc.publisherBrasil
dc.publisherCiência da Computação
dc.publisherUFSM
dc.publisherPrograma de Pós-Graduação em Ciência da Computação
dc.publisherCentro de Tecnologia
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.subjectSistema de detecção de intrusões
dc.subjectAnálise de fontes heterogêneas de dados
dc.subjectClassificação de dados
dc.subjectSeleção dinâmica de classificador
dc.subjectRede de conselhos
dc.subjectIntrusion detetion system
dc.subjectHeterogeneous data source analysis
dc.subjectData classification
dc.subjectDynamic classifier selection
dc.subjectCouncil network
dc.titleDetecção de intrusões através da seleção dinâmica de classificador baseada em redes de conselhos
dc.typeTesis


Este ítem pertenece a la siguiente institución