Dissertação
Estudo do parâmetro de ordem e do momento magnético em borocarbetos pseudoquaternários
Fecha
2007-03-27Registro en:
SANTOS, Cláudia Lange dos. Study of order parameter and magnetic moment in pseudoquaternary borocarbides. 2007. 102 f. Dissertação (Mestrado em Física) - Universidade Federal de Santa Maria, Santa Maria, 2007.
Autor
Santos, Cláudia Lange dos
Institución
Resumen
Experimental data show that the dissolved impurities of the Mn presents a magnetic moment when substitute the Ni atom in pseudoquaternary borocarbide Y (Ni(1−x)Mx)2B2C, this is not observed if the impurities are Fe and Co. In this work we do a theoretical study of the superconducting order parameter variation and a possible formation of impurities magnetic moment to T < Tc. We have used the LAPW method, based in Density Functional Theory, to calculate the density of state of pure compound. To describe the superconductor system it was used the attractive Hubbard model. To describe the effects of the disorder induced by the dissolved impurities was used the coherent potential approximation. Using the Nambu s formalism to represent the Hamiltonian and the Green s functions of the effective medium (g) and of the perturbed system (G), we calculate the magnetic moment of the impurities from the diagonal terms and the variation of the order parameter from the off-diagonal one. The calculated date to magnetic moment show a qualitative agreement with the experimental results to Mn impurities. To the Fe and Co cases no magnetic moment was observed, in agreement with the experimental results too. The calculated order parameter shows a decrease with concentration to the Mn and Fe atoms. We investigate, through of the a calculation first principles (LAPW), the possible formation of the magnetic moment in this compound to concentration of 25 and 12.5%. The obtained results show that to concentration of 25%, both the impurities, Mn and Fe, presents a magnetic moment. The magnetization on the Co site was small when compared with the above cases. In this way we conclude that the Co atom not present a magnetic moment in this system.