Tese
Problemas de roteamento de veículos com dependência temporal e espacial entre rotas de equipes de campo
Fecha
2016-08-26Registro en:
DHEIN, Guilherme. Vehicle routing problems with temporal and spatial
dependencies among routes. 2016. 151 f. Tese (Doutorado em Engenharia Elétrica) - Universidade Federal de Santa Maria, Santa Maria, 2016.
Autor
Dhein, Guilherme
Institución
Resumen
This thesis presents two new routing problems, both with objective functions focused on
relative positioning of teams during the routing horizon. The relative positioning results in
temporal and spatial dependencies among routes and is quantified with a nonlinear dispersion
metric, designed to evaluate the instantaneous distances among teams over a time
interval. This metric allows the design of objective functions to approximate teams during
routes execution, when minimized, or disperse them, when maximized. Both approximation
and dispersion are important routing characteristics in some practical applications, and
two new optimization problems are proposed with these opposite objectives. The first one
is a variation of the Multiple Traveling Salesman Problem, and its goal is to find a set of
tours where the salesmen travel close to each other, minimizing dispersion. A Local Search
Genetic Algorithm is proposed to solve the problem. It includes specialized genetic
operators and neighborhoods. A new set of benchmark instances is proposed, adapted for
the new problem from literature instances. Computational results show that the proposed
approach provides solutions with the desired characteristics of minimal dispersion. The
second problem is a bi-objective arc routing problem in which routes must be constructed
in order to maximize collected profit and dispersion of teams. The maximization of the dispersion
metric fosters the scattering of the teams during routing procedure. Usually, profit
and dispersion objectives are conflicting, and by using a bi-objective approach the decision
maker is able to choose a trade-off between collecting profits and scattering teams. Two
solution methods are proposed, a Multi-objective Genetic Algorithm and a Multi-objective
Genetic Local Search Algorithm, both specialized in order to exploit the characteristics of
the problem. It is demonstrated, by means of computational experiments on a new set of
benchmark instances, that the proposed approach provides approximation sets with the
desired characteristics.