Artículos de revistas
On certain homological invariant and its relation with Poincare duality pairs
Fecha
2018-01-01Registro en:
Algebra & Discrete Mathematics. Starobilsk: Luhansk Taras Shevchenko Natl Univ, v. 25, n. 2, p. 177-187, 2018.
1726-3255
WOS:000439821600002
Autor
Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
Institución
Resumen
Let G be a group, S = {S-i, i is an element of I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z(2)G-module. In [4] the authors defined a homological invariant E,(G,S,M), which is dual to the cohomological invariant E-*(G,S, M), defined in [1]. In this paper we present a more general treatment of the invariant E-*(G, S, M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S, M). We analyze, through the invariant E-*(G, S, M), properties about groups that satisfy certain finiteness conditions such as Poincare duality for groups and pairs.