dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-11-26T17:54:40Z
dc.date.available2018-11-26T17:54:40Z
dc.date.created2018-11-26T17:54:40Z
dc.date.issued2018-01-01
dc.identifierAlgebra & Discrete Mathematics. Starobilsk: Luhansk Taras Shevchenko Natl Univ, v. 25, n. 2, p. 177-187, 2018.
dc.identifier1726-3255
dc.identifierhttp://hdl.handle.net/11449/164463
dc.identifierWOS:000439821600002
dc.description.abstractLet G be a group, S = {S-i, i is an element of I} a non empty family of (not necessarily distinct) subgroups of infinite index in G and M a Z(2)G-module. In [4] the authors defined a homological invariant E,(G,S,M), which is dual to the cohomological invariant E-*(G,S, M), defined in [1]. In this paper we present a more general treatment of the invariant E-*(G, S, M) obtaining results and properties, under a homological point of view, which are dual to those obtained by Andrade and Fanti with the invariant E(G, S, M). We analyze, through the invariant E-*(G, S, M), properties about groups that satisfy certain finiteness conditions such as Poincare duality for groups and pairs.
dc.languageeng
dc.publisherLuhansk Taras Shevchenko Natl Univ
dc.relationAlgebra & Discrete Mathematics
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subject(co)homology of groups
dc.subjectduality groups
dc.subjectduality pairs
dc.subjecthomological invariant
dc.titleOn certain homological invariant and its relation with Poincare duality pairs
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución