Actas de congresos
Investigation of photoinduced electrical properties in the heterojunction TiO2/SnO2
Fecha
2014-01-01Registro en:
Electroceramics Vi. Stafa-zurich: Trans Tech Publications Ltd, v. 975, p. 201-206, 2014.
1022-6680
10.4028/www.scientific.net/AMR.975.201
WOS:000348023200033
7730719476451232
1802982806436894
0000-0001-5762-6424
Autor
Universidade Estadual Paulista (Unesp)
Institución
Resumen
TiO2/SnO2 thin films heterostructures were grown by the sol-gel dip-coating technique. It was found that the crystalline structure of TiO2 depends on the annealing temperature and the substrate type. TiO2 films deposited on glass substrate, submitted to thermal annealing until 550 degrees C, present anatase structure, whereas films deposited on quartz substrate transform to rutile structure when thermally annealed at 1100 degrees C. When structured as rutile, this oxide semiconductor has very close lattice parameters to those of SnO2, making easier the heterostructure assembling. The electrical properties of TiO2/SnO2 heterostructure were evaluated as function of temperature and excitation with different light sources. The temperature dependence of conductivity is dominated by a deep level with energy coincident with the second ionization level of oxygen vacancies in SnO2, suggesting the dominant role of the most external layer material (SnO2) to the electrical transport properties. The fourth harmonic of a Nd:YAG laser line (4.65 eV) seems to excite the most external layer whereas a InGaN LED (2.75 eV) seems to excite electrons from the ground state of a quantized interfacial channel as well as intrabandgap states of the TiO2 layer.