Artículos de revistas
Stieltjes functions and discrete classical orthogonal polynomials
Fecha
2013-10-01Registro en:
Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 32, n. 3, p. 537-547, 2013.
1807-0302
10.1007/s40314-013-0035-5
WOS:000326103500013
8300322452622467
0000-0002-6823-4204
Autor
Universidade Estadual Paulista (Unesp)
Univ Granada
Institución
Resumen
Classical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases.