dc.contributor | Universidade Estadual Paulista (Unesp) | |
dc.contributor | Univ Granada | |
dc.date.accessioned | 2014-12-03T13:11:09Z | |
dc.date.available | 2014-12-03T13:11:09Z | |
dc.date.created | 2014-12-03T13:11:09Z | |
dc.date.issued | 2013-10-01 | |
dc.identifier | Computational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 32, n. 3, p. 537-547, 2013. | |
dc.identifier | 1807-0302 | |
dc.identifier | http://hdl.handle.net/11449/112921 | |
dc.identifier | 10.1007/s40314-013-0035-5 | |
dc.identifier | WOS:000326103500013 | |
dc.identifier | 8300322452622467 | |
dc.identifier | 0000-0002-6823-4204 | |
dc.description.abstract | Classical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases. | |
dc.language | eng | |
dc.publisher | Springer | |
dc.relation | Computational & Applied Mathematics | |
dc.rights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | Difference equations | |
dc.subject | Stieltjes functions | |
dc.subject | Classical orthogonal polynomials of a discrete variable | |
dc.title | Stieltjes functions and discrete classical orthogonal polynomials | |
dc.type | Artículos de revistas | |