dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorUniv Granada
dc.date.accessioned2014-12-03T13:11:09Z
dc.date.available2014-12-03T13:11:09Z
dc.date.created2014-12-03T13:11:09Z
dc.date.issued2013-10-01
dc.identifierComputational & Applied Mathematics. Heidelberg: Springer Heidelberg, v. 32, n. 3, p. 537-547, 2013.
dc.identifier1807-0302
dc.identifierhttp://hdl.handle.net/11449/112921
dc.identifier10.1007/s40314-013-0035-5
dc.identifierWOS:000326103500013
dc.identifier8300322452622467
dc.identifier0000-0002-6823-4204
dc.description.abstractClassical orthogonal polynomials can be characterized in terms of the corresponding Stieltjes function. We consider the construction of a Stieltjes function in terms of the falling factorials for discrete classical orthogonal polynomials (Charlier, Krawtchouk, Meixner, and Hahn). This Stieltjes function associated with classical orthogonal polynomials of a discrete variable is solution of a non-homogeneous difference equation. That property characterizes the discrete classical measures. In addition, an hypergeometric expression for the Stieltjes function is obtained in all the discrete classical cases.
dc.languageeng
dc.publisherSpringer
dc.relationComputational & Applied Mathematics
dc.rightsAcesso restrito
dc.sourceWeb of Science
dc.subjectDifference equations
dc.subjectStieltjes functions
dc.subjectClassical orthogonal polynomials of a discrete variable
dc.titleStieltjes functions and discrete classical orthogonal polynomials
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución