Tesis
Extração semi-automática de rodovias no espaço-objeto: uso integrado de um estéreo par de imagens aéreas e um MDT
Fecha
2010-12-09Registro en:
MARTINS, Érico Fernando de Oliveira. Extração semi-automática de rodovias no espaço-objeto: uso integrado de um estéreo par de imagens aéreas e um MDT. 2010. 97 f. Dissertação (mestrado) - Universidade Estadual Paulista, Faculdade de Ciências e Tecnologia, 2010.
000639324
martins_efo_me_prud.pdf
33004129043P0
Autor
Poz, Aluir Porfírio Dal [UNESP]
Universidade Estadual Paulista (Unesp)
Institución
Resumen
Nesta pesquisa é proposta uma metodologia semi-automática para extração de rodovias a partir de um estéreo par de imagens aéreas de baixa resolução e do respectivo Modelo Digital de Terreno, tendo por base a otimização por programação dinâmica no espaço-objeto. A metodologia consiste em um processo iterativo iniciado com pontos sementes fornecidos pelo operador no espaço-imagem, que após transformação para o espaço-objeto passam por ciclos de otimização via Programação Dinâmica até descreverem o eixo da rodovia. O desempenho da metodologia foi testado por meio de experimentos com dados reais, cujos resultados foram avaliados tanto na forma visual (qualitativamente) como numérica (quantitativamente). Os resultados alcançados nos experimentos demonstraram a robustez da metodologia diante de problemas de caráter geométrico e radiométrico comuns na extração semi-automática de rodovias a partir de imagens aéreas. Problemas de oclusão e baixa resposta radiométrica foram minimizados pelo uso de injunções globais, de natureza geométrica, bem como pela redundância e complementação de dados radiométricos provenientes das imagens que compõem o estéreo par. As linhas de busca multiresolução e os critérios de parada das iterações se mostraram como sendo importantes recursos na tentativa de conciliar extração de qualidade com baixo esforço computacional This research proposes a semi-automatic methodology for road extraction by using a stereo pair of aerial images with low resolution, as well as Digital Terrain Model and dynamic programming in object-space. The methodology consists of an interactive process that starts with seed points provided by the operator in the space-image, which are later projected onto the space-object. Next, cycles of optimization are accomplished by the dynamic programming algorithm until the axis of the highway is correctly described. The performance of the methodology was tested with experiments by using real data, and results were evaluated both visually and numerically. The results achieved in the experiments have demonstrated the robustness of the methodology in face of geometrical and radiometric problems which are common in road extraction. Occlusions and low radiometric responses were minimized by the use of global geometric constraints, as well as the redundancy and complementation of radiometric data from the images that build the stereo pair. The line of multi-resolution search and stopping criteria of the interactions have showed themselves that they have been an important resort in the attempt to reconcile the extraction of high quality with low consumption of computational resources