dc.contributorSt. Joseph's Hospital
dc.contributorAmgen
dc.contributorAmylin Pharmaceuticals
dc.contributorUniversidade Estadual Paulista (Unesp)
dc.contributorArizona State University
dc.date.accessioned2014-05-27T11:22:32Z
dc.date.available2014-05-27T11:22:32Z
dc.date.created2014-05-27T11:22:32Z
dc.date.issued2007-07-11
dc.identifierJournal of Neuroscience, v. 27, n. 28, p. 7459-7468, 2007.
dc.identifier0270-6474
dc.identifierhttp://hdl.handle.net/11449/69789
dc.identifier10.1523/JNEUROSCI.1483-07.2007
dc.identifier2-s2.0-34447504896
dc.identifier2-s2.0-34447504896.pdf
dc.description.abstractAn involvement of the transient receptor potential vanilloid (TRPV) 1 channel in the regulation of body temperature (T b) has not been established decisively. To provide decisive evidence for such an involvement and determine its mechanisms were the aims of the present study. We synthesized a new TRPV1 antagonist, AMG0347 [(E)-N-(7-hydroxy-5,6,7,8-tetrahydronaphthalen-1- yl)-3-(2-(piperidin-1-yl)-6-(trifluoromethyl)pyridin-3-yl)acrylamide], and characterized it in vitro. We then found that this drug is the most potent TRPV1 antagonist known to increase T b of rats and mice and showed (by using knock-out mice) that the entire hyperthermic effect of AMG0347 is TRPV1 dependent. AMG0347-induced hyperthermia was brought about by one or both of the two major autonomic cold-defense effector mechanisms (tail-skin vasoconstriction and/or thermogenesis), but it did not involve warmth-seeking behavior. The magnitude of the hyperthermic response depended on neither T b nor tail-skin temperature at the time of AMG0347 administration, thus indicating that AMG0347-induced hyperthermia results from blockade of tonic TRPV1 activation by nonthermal factors. AMG0347 was no more effective in causing hyperthermia when administered into the brain (intracerebroventricularly) or spinal cord (intrathecally) than when given systemically (intravenously), which indicates a peripheral site of action. We then established that localized intra-abdominal desensitization of TRPV1 channels with intraperitoneal resiniferatoxin blocks the T b response to systemic AMG0347; the extent of desensitization was determined by using a comprehensive battery of functional tests. We conclude that tonic activation of TRPV1 channels in the abdominal viscera by yet unidentified nonthermal factors inhibits skin vasoconstriction and thermogenesis, thus having a suppressive effect on T b. Copyright © 2007 Society for Neuroscience.
dc.languageeng
dc.relationJournal of Neuroscience
dc.relation5.970
dc.relation4,466
dc.rightsAcesso restrito
dc.sourceScopus
dc.subjectAfferent
dc.subjectChannel
dc.subjectChemosensory
dc.subjectHyperthermia
dc.subjectTemperature
dc.subjectTRPV1
dc.subject3 (4 tert butylphenyl) n (2,3 dihydrobenzo[1,4]dioxin 6 yl)acrylamide
dc.subjectamg 0347
dc.subjectamg 9810
dc.subjectn (7 hydroxy 5,6,7,8 tetrahydronaphthalen 1 yl) 3 [2 (piperidin 1 yl) 6 (trifluoromethyl)pyridin 3 yl]acrylamide
dc.subjectprotein inhibitor
dc.subjectresiniferatoxin
dc.subjecttransient receptor potential vanilloid 1 antagonist
dc.subjectunclassified drug
dc.subjectvanilloid receptor 1
dc.subjectabdominal wall musculature
dc.subjectanimal cell
dc.subjectanimal experiment
dc.subjectanimal model
dc.subjectbehavior
dc.subjectcontrolled study
dc.subjectdefense mechanism
dc.subjectdesensitization
dc.subjectdrug synthesis
dc.subjectfemale
dc.subjectgene activation
dc.subjecthyperthermia
dc.subjectin vitro study
dc.subjectknockout mouse
dc.subjectmouse
dc.subjectnonhuman
dc.subjectpriority journal
dc.subjectrat
dc.subjectrodent
dc.subjectskin temperature
dc.subjectthermogenesis
dc.subjectvasoconstriction
dc.subjectAbdominal Cavity
dc.subjectAcrylamides
dc.subjectAnimals
dc.subjectAutonomic Nervous System
dc.subjectBody Temperature
dc.subjectBody Temperature Regulation
dc.subjectCHO Cells
dc.subjectCold
dc.subjectCricetinae
dc.subjectCricetulus
dc.subjectDiterpenes
dc.subjectFever
dc.subjectHumans
dc.subjectMice
dc.subjectMice, Knockout
dc.subjectPyridines
dc.subjectRats
dc.subjectSkin
dc.subjectSkin Temperature
dc.subjectThermogenesis
dc.subjectTRPV Cation Channels
dc.subjectVasoconstriction
dc.subjectViscera
dc.titleNonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución