dc.creatorSan Martín, Carol D.
dc.creatorPaula-Lima, Andrea C.
dc.creatorGarcía, Alejandra
dc.creatorBarattini Matta, Pablo Gianfranco
dc.creatorHartel, Steffen
dc.creatorNúñez González, Marco
dc.creatorHidalgo Tapia, María Cecilia
dc.date.accessioned2019-03-15T16:06:09Z
dc.date.accessioned2019-04-26T02:42:34Z
dc.date.available2019-03-15T16:06:09Z
dc.date.available2019-04-26T02:42:34Z
dc.date.created2019-03-15T16:06:09Z
dc.date.issued2014
dc.identifierFrontiers in Molecular Neuroscience, Volumen 7, Issue MAR, 2018,
dc.identifier16625099
dc.identifier10.3389/fnmol.2014.00013
dc.identifierhttp://repositorio.uchile.cl/handle/2250/166130
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2466563
dc.description.abstractMounting evidence indicates that iron accumulation impairs brain function. We have reported previously that addition of sub-lethal concentrations of iron to primary hippocampal neurons produces Ca2+ signals and promotes cytoplasmic generation of reactive oxygen species. These Ca2+ signals, which emerge within seconds after iron addition, arise mostly from Ca2+ release through the redox-sensitive ryanodine receptor (RyR) channels present in the endoplasmic reticulum. We have reported also that addition of synaptotoxic amyloid-p oligomers to primary hippocampal neurons stimulates RyR-mediated Ca2+ release, generating long-lasting Ca2+ signals that activate Ca2+-sensitive cellular effectors and promote the disruption of the mitochondrial network. Here, we describe that 24 h incubation of primary hippocampal neurons with iron enhanced agonist-induced RyR-mediated Ca2+ release and promoted mitochondrial network fragmentation in 43% of neurons, a response significantly prevented by RyR inhib
dc.languageen
dc.publisherFrontiers Research Foundation
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceFrontiers in Molecular Neuroscience
dc.subjectCellular redox state
dc.subjectDrp-1
dc.subjectEndoplasmic reticulum
dc.subjectMitochondrial calcium
dc.subjectMitochondrial network
dc.subjectReactive oxygen species
dc.titleRyanodine receptor-mediated Ca2+ release underlies iron-induced mitochondrial fission and stimulates mitochondrial Ca2+ uptake in primary hippocampal neurons
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución