dc.creatorDel Campo, Andrea
dc.creatorParra, Valentina
dc.creatorVásquez Trincado, César Alonso
dc.creatorGutiérrez, Tomás
dc.creatorMorales, Pablo E.
dc.creatorLópez Crisosto, Camila
dc.creatorBravo Sagua, Roberto
dc.creatorNavarro Márquez, Mario F.
dc.creatorVerdejo, Hugo E.
dc.creatorContreras Ferrat, Ariel Eduardo
dc.creatorTroncoso, Rodrigo
dc.creatorChiong Lay, Mario
dc.creatorLavandero González, Sergio
dc.date.accessioned2019-03-15T16:05:48Z
dc.date.available2019-03-15T16:05:48Z
dc.date.created2019-03-15T16:05:48Z
dc.date.issued2014
dc.identifierAmerican Journal of Physiology - Endocrinology and Metabolism, Volumen 306, Issue 1, 2018,
dc.identifier01931849
dc.identifier15221555
dc.identifier10.1152/ajpendo.00146.2013
dc.identifierhttps://repositorio.uchile.cl/handle/2250/166061
dc.description.abstractInsulin is a major regulator of glucose metabolism, stimulating its mitochondrial oxidation in skeletal muscle cells. Mitochondria are dynamic organelles that can undergo structural remodeling in order to cope with these everchanging metabolic demands. However, the process by which mitochondrial morphology impacts insulin signaling in the skeletal muscle cells remains uncertain. To address this question, we silenced the mitochondrial fusion proteins Mfn2 and Opa1 and assessed insulin-dependent responses in L6 rat skeletal muscle cells. We found that mitochondrial fragmentation attenuates insulin-stimulated Akt phosphorylation, glucose uptake and cell respiratory rate. Importantly, we found that insulin induces a transient rise in mitochondrial Ca2+ uptake, which was attenuated by silencing Opa1 or Mfn2. Moreover, treatment with Ruthenium red, an inhibitor of mitochondrial Ca2+ uptake, impairs Akt signaling without affecting mitochondrial dynamics. All together, these results suggest th
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAmerican Journal of Physiology - Endocrinology and Metabolism
dc.subjectCalcium
dc.subjectInsulin
dc.subjectMfn2
dc.subjectMitochondrial fragmentation
dc.subjectOpa1
dc.titleMitochondrial fragmentation impairs insulin-dependent glucose uptake by modulating Akt activity through mitochondrial Ca2+ uptake
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución