dc.creatorMatuschke, Jannik
dc.creatorSkutella, Martin
dc.creatorSoto, José A.
dc.date.accessioned2019-01-04T20:18:05Z
dc.date.accessioned2019-04-26T02:17:41Z
dc.date.available2019-01-04T20:18:05Z
dc.date.available2019-04-26T02:17:41Z
dc.date.created2019-01-04T20:18:05Z
dc.date.issued2018-05
dc.identifierMathematics of Operations Research Volumen: 43 Número: 2 Páginas: 675-692
dc.identifier10.1287/moor.2017.0878
dc.identifierhttp://repositorio.uchile.cl/handle/2250/159274
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/2461329
dc.description.abstractThe following game is played on a weighted graph: Alice selects a matching M and Bob selects a number k. Alice's payoff is the ratio of the weight of the k heaviest edges of M to the maximum weight of a matching of size at most k. If M guarantees a payoff of at least a then it is called alpha-robust. In 2002, Hassin and Rubinstein gave an algorithm that returns a 1/root 2 -robust matching, which is best possible. We show that Alice can improve her payoff to 1/ln(4) by playing a randomized strategy. This result extends to a very general class of independence systems that includes matroid intersection, b-matchings, and strong 2-exchange systems. It also implies an improved approximation factor for a stochastic optimization variant known as the maximum priority matching problem and translates to an asymptotic robustness guarantee for deterministic matchings, in which Bob can only select numbers larger than a given constant. Moreover, we give a new LP-based proof of Hassin and Rubinstein's bound.
dc.languageen
dc.publisherInforms
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMathematics of Operations Research
dc.subjectRobust matchings
dc.subjectRandomization
dc.titleRobust randomized matchings
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución