dc.creatorArenas, Manuel
dc.date.accessioned2018-12-20T14:41:22Z
dc.date.available2018-12-20T14:41:22Z
dc.date.created2018-12-20T14:41:22Z
dc.date.issued2007
dc.identifierCommunications in Algebra, Volumen 35, Issue 2, 2018, Pages 675-688
dc.identifier00927872
dc.identifier15324125
dc.identifier10.1080/00927870601074905
dc.identifierhttps://repositorio.uchile.cl/handle/2250/157073
dc.description.abstractWe study commutative algebras A over fields of characteristic ≠2, 3 which satisfy the identity β{x(y(xx)) - x(x(xy))} + γ{y(x(xx)) - x(x(xy))} = 0. We do not assume power-associativity. We find the Peirce decomposition of these algebras. We prove the existence of a Wedderburn decomposition under some additional conditions. Copyright © Taylor & Francis Group, LLC.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceCommunications in Algebra
dc.subjectAlmost-Jordan
dc.subjectIdempotent element
dc.subjectJordan
dc.subjectNilpotent
dc.subjectPeirce decomposition
dc.subjectSolvable
dc.subjectWeddernburn decomposition
dc.titleThe Wedderburn principal theorem for generalized almost-Jordan algebras
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución