Chile | Artículos de revistas
dc.creatorHojman Guiñerman, Sergio
dc.date.accessioned2018-12-20T14:39:24Z
dc.date.available2018-12-20T14:39:24Z
dc.date.created2018-12-20T14:39:24Z
dc.date.issued1996
dc.identifierJournal of Physics A: Mathematical and General, Volumen 29, Issue 3, 2018, Pages 667-674
dc.identifier03054470
dc.identifier10.1088/0305-4470/29/3/017
dc.identifierhttp://repositorio.uchile.cl/handle/2250/156900
dc.description.abstractA method to construct Hamiltonian theories for systems of both ordinary and partial differential equations is presented. The knowledge of a Lagrangian is not at all necessary to achieve the result. The only ingredients required for the construction are one solution of the symmetry (perturbation) equation and one constant of motion of the original system. It turns out that the Poisson bracket structure for the dynamical variables is far from becoming uniquely determined by the differential equations of motion. Examples in classical mechanics as well as in field theory are presented. © 1996 IOP Publishing Ltd.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Physics A: Mathematical and General
dc.subjectStatistical and Nonlinear Physics
dc.subjectMathematical Physics
dc.subjectPhysics and Astronomy (all)
dc.titleThe construction of a Poisson structure out of a symmetry and a conservation law of a dynamical system
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución