dc.creatorPérez, Patricia
dc.creatorContreras Ramos, Renato
dc.creatorAizman, Arie
dc.date.accessioned2018-12-20T14:35:58Z
dc.date.available2018-12-20T14:35:58Z
dc.date.created2018-12-20T14:35:58Z
dc.date.issued1996
dc.identifierJournal of Physical Chemistry, Volumen 100, Issue 50, 2018, Pages 19326-19332
dc.identifier00223654
dc.identifier10.1021/jp960555+
dc.identifierhttps://repositorio.uchile.cl/handle/2250/156638
dc.description.abstractA combined methodology of semiempirical density functional (DFT) and Hartree-Fock (HF) theories is used to analyze the solution-phase proton-transfer (PT) process in the H2O⋯HX (X = F, Cl, and OH) model systems. Gas-phase PT, hydrogen bonding, ion-pairing, dissociation, and solvent effect are considered as the contributing factors to the solution PT reaction. The H-bonded and ion-pair structures are determined from the proton-transfer potential (PTP) profiles and full geometry optimization, using the Amsterdam density functional (ADF) code. These structures are then used as input to the semiempirical SCRF/CNDO method that incorporates solvent effects. The semiempirical SCRF gas-phase results qualitatively reproduce the experimental trend for the gas-phase proton affinities (PA) (OH- > F- > Cl-). The solution-phase results correctly explain the strong acid character of HCl (pKa < 0) and the weak dissociation of HF (pKa > 0) in water. © 1996 American Chemical Society.
dc.languageen
dc.publisherAmerican Chemical Society
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Physical Chemistry
dc.subjectEngineering (all)
dc.subjectPhysical and Theoretical Chemistry
dc.titleElectrostatic and non-electrostatic contributions to hydrogen bonding and proton transfer in solution phase
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución