dc.creatorChesta López, J.
dc.creatorFoa Torres, Luis
dc.creatorNunez,
dc.date.accessioned2018-12-20T14:22:56Z
dc.date.available2018-12-20T14:22:56Z
dc.date.created2018-12-20T14:22:56Z
dc.date.issued2018
dc.identifierPhysical Review B, Volumen 97, Issue 12, 2018,
dc.identifier24699969
dc.identifier24699950
dc.identifier10.1103/PhysRevB.97.125419
dc.identifierhttps://repositorio.uchile.cl/handle/2250/155800
dc.description.abstract© 2018 American Physical Society.Weyl semimetals are a new paradigmatic topological phase of matter featuring a gapless spectrum. One of its most distinctive features is the presence of Fermi arc surface states. Here, we report on atomistic simulations of the dc conductance and quantum Hall response of a minimal Weyl semimetal. By using scattering theory we show that a quantized Hall conductance with a nonvanishing longitudinal conductance emerges associated to the Fermi arc surface states with a remarkable robustness to high concentrations of defects in the system. Additionally, we predict that a slab of a Weyl semimetal with broken time-reversal symmetry bears persistent currents fully determined by the system size and the lattice parameters.
dc.languageen
dc.publisherAmerican Physical Society
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourcePhysical Review B
dc.subjectElectronic, Optical and Magnetic Materials
dc.subjectCondensed Matter Physics
dc.titleMultiterminal conductance at the surface of a Weyl semimetal
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución