dc.creatorAlvarez, Edgardo
dc.creatorGómez, Adrián
dc.creatorPinto Jiménez, Manuel
dc.date.accessioned2018-12-20T14:22:45Z
dc.date.available2018-12-20T14:22:45Z
dc.date.created2018-12-20T14:22:45Z
dc.date.issued2018
dc.identifierElectronic Journal of Qualitative Theory of Differential Equations, Volumen 2018,
dc.identifier14173875
dc.identifier10.14232/ejqtde.2018.1.16
dc.identifierhttps://repositorio.uchile.cl/handle/2250/155741
dc.description.abstract© 2018, University of Szeged. All rights reserved. In this paper we study a new class of functions, which we call (ω, c)-periodic functions. This collection includes periodic, anti-periodic, Bloch and unbounded functions. We prove that the set conformed by these functions is a Banach space with a suitable norm. Furthermore, we show several properties of this class of functions as the convolution invariance. We present some examples and a composition result. As an application, we establish some sufficient conditions for the existence and uniqueness of (ω, c)-periodic mild solutions to a fractional evolution equation.
dc.languageen
dc.publisherUniversity of Szeged
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceElectronic Journal of Qualitative Theory of Differential Equations
dc.subject(ω, C)-periodic
dc.subjectAntiperiodic
dc.subjectCompleteness
dc.subjectConvolution invariance
dc.subjectFractional integro-differential equations
dc.subjectPeriodic
dc.title(ω, c)-periodic functions and mild solutions to abstract fractional integro-differential equations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución