Chile | Artículos de revistas
dc.creatorPinto Jiménez, Manuel
dc.creatorVidal, Claudio
dc.date.accessioned2018-12-20T14:15:28Z
dc.date.available2018-12-20T14:15:28Z
dc.date.created2018-12-20T14:15:28Z
dc.date.issued2017
dc.identifier10991476
dc.identifier01704214
dc.identifier10.1002/mma.4507
dc.identifierhttp://repositorio.uchile.cl/handle/2250/155318
dc.description.abstract© 2017 John Wiley & Sons, Ltd. Using the existence of integrable bi-almost-periodic Green functions of linear homogeneous differential equations and the contraction fixed point, we are able to prove the existence of almost and pseudo-almost-periodic mild solutions under quite general hypotheses for the differential equation with constant delay x(t)=A(t)x(t)+f(t,x(t),x(t-τ)),t∈R, in a Banach space X, where τ>0 is a fixed constant. The results extend the corresponding ones in the case of exponential dichotomy. Some examples illustrate the importance of the concepts.
dc.languageen
dc.publisherJohn Wiley and Sons Ltd
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMathematical Methods in the Applied Sciences
dc.subjectAlmost-periodic solutions
dc.subjectFunctional differential equations
dc.subjectIntegrable dichotomy
dc.subjectPseudo-almost-periodic solutions
dc.subjectSome examples illustrate the importance of the concepts
dc.titlePseudo-almost-periodic solutions for delayed differential equations with integrable dichotomies and bi-almost-periodic Green functions
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución