dc.creatorArenas Carmona, Luis
dc.date.accessioned2018-12-20T14:15:22Z
dc.date.available2018-12-20T14:15:22Z
dc.date.created2018-12-20T14:15:22Z
dc.date.issued2017
dc.identifierProyecciones, Volumen 36, Issue 1, 2018, Pages 131-148
dc.identifier07176279
dc.identifier07160917
dc.identifier10.4067/s0716-09172017000100008
dc.identifierhttps://repositorio.uchile.cl/handle/2250/155284
dc.description.abstractA representation field for a non-maximal order in a central simple algebra is a subfield of the spinor class field of maximal orders which determines the set of spinor genera of maximal orders representing H. In our previous work we have proved the existence of the representation field for several important families of suborders, like commutative orders, while we have also found examples where the representation field fails to exist. To be precise, we have found full-rank orders, in central simple algebras of dimension 9 or larger over a suitable field, whose representation field is undefined. In this article, we prove that the representation field is defined for any order of rank r ≤ 7. This is done by defining representation fields for arbitrary representations of orders into central simple algebra and showing that the computation of these generalized representation fields can be reduced to the case of irreducible representations. The same technique yields the existence of representa
dc.languageen
dc.publisherUniversidad Catolica del Norte
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceProyecciones
dc.subjectCentral simple algebras
dc.subjectMaximal orders
dc.subjectRepresentations of orders
dc.subjectSpinor genera
dc.titleRepresentation fields for orders of small rank
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución