dc.creatorHojman Guiñerman, Sergio
dc.date.accessioned2018-12-20T14:14:23Z
dc.date.available2018-12-20T14:14:23Z
dc.date.created2018-12-20T14:14:23Z
dc.date.issued2014
dc.identifierRevista Mexicana de Fisica, Volumen 60, Issue 5, 2018, Pages 336-339
dc.identifier0035001X
dc.identifierhttp://repositorio.uchile.cl/handle/2250/155126
dc.description.abstractA mechanism that produces conical dispersion relations is presented. A Kronig Penney one dimensional array with two different strengths delta function potentials gives rise to both the gap closure and the dispersion relation observed in graphene and other materials. The Schr¨odinger eigenvalue problem is locally invariant under the infinite dimensional Virasoro algebra near conical dispersion points in reciprocal space, thus suggesting a possible relation to string theory.
dc.languageen
dc.publisherSociedad Mexicana de Fisica
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceRevista Mexicana de Fisica
dc.subjectConical dispersion relations
dc.subjectModified Dirac-Kronig-Penney potential
dc.subjectQuantum mechanics
dc.titleOrigin of conical dispersion relations
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución