dc.creatorMolina Gálvez, Mario
dc.creatorKartashov, Yaroslav V.
dc.creatorTorner, Lluis
dc.creatorKivshar, Yuri S.
dc.date.accessioned2018-12-20T14:11:47Z
dc.date.available2018-12-20T14:11:47Z
dc.date.created2018-12-20T14:11:47Z
dc.date.issued2007
dc.identifierOptics Letters, Volumen 32, Issue 18, 2018, Pages 2668-2670
dc.identifier01469592
dc.identifier10.1364/OL.32.002668
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154642
dc.description.abstractWe study surface modes at the edge of a semi-infinite chirped photonic lattice in the framework of an effective discrete nonlinear model. We demonstrate that the lattice chirp can change dramatically the conditions for the mode localization near the surface, and we find numerically the families of discrete surface solitons in this case. Such solitons do not require any minimum power to exist provided the chirp parameter exceeds some critical value. We also analyze how the chirp modifies the interaction of a soliton with the lattice edge. © 2007 Optical Society of America.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceOptics Letters
dc.subjectAtomic and Molecular Physics, and Optics
dc.titleSurface solitons in chirped photonic lattices
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución