dc.creatorBehn Von Schmieden, Antonio
dc.creatorCorrea, Iván
dc.creatorHentzel, Irvin Roy
dc.date.accessioned2018-12-20T14:11:45Z
dc.date.available2018-12-20T14:11:45Z
dc.date.created2018-12-20T14:11:45Z
dc.date.issued2008
dc.identifierCommunications in Algebra, Volumen 36, Issue 1, 2018, Pages 132-141
dc.identifier00927872
dc.identifier15324125
dc.identifier10.1080/00927870701665248
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154630
dc.description.abstractIn this article we study nonassociative rings satisfying the polynomial identity x(yz)=y(zx), which we call "cyclic rings." We prove that every semiprime cyclic ring is associative and commutative and that every cyclic right-nilring is solvable. Moreover, we find sufficient conditions for the nilpotency of cyclic right-nilrings and apply these results to obtain sufficient conditions for the nilpotency of cyclic right-nilalgebras. Copyright © Taylor & Francis Group, LLC.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceCommunications in Algebra
dc.subjectAlgebra and Number Theory
dc.titleSemiprimality and nilpotency of nonassociative rings satisfying x(yz)=y(zx)
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución