dc.creatorGyori, I.
dc.creatorTrofimchuk, S. I.
dc.date.accessioned2018-12-20T14:11:09Z
dc.date.available2018-12-20T14:11:09Z
dc.date.created2018-12-20T14:11:09Z
dc.date.issued2000
dc.identifierJournal of Difference Equations and Applications, Volumen 6, Issue 6, 2018, Pages 647-665
dc.identifier10236198
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154478
dc.description.abstractWe study the attractivity properties of equilibrium points of the scalar delay difference equation xn+1-xn= -δxn+pf(xn-k) which arises in many contexts in the ecology. New sufficient conditions for the global stability of a unique positive steady state are obtained. These conditions contain some earlier results as particular cases. Some persistence results for this equation are also proved. © 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Gordon and Breach Science Publishers imprint.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceJournal of Difference Equations and Applications
dc.subjectAttractivity
dc.subjectDifference equations
dc.subjectLasota-Wazewska system
dc.subjectNicholson's blowflies
dc.subjectPersistence
dc.titleGlobal attractivity and persistence in a discrete population model
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución