dc.creatorHentzel, Irvin Roy
dc.creatorLabra, Alicia
dc.date.accessioned2018-12-20T14:10:53Z
dc.date.available2018-12-20T14:10:53Z
dc.date.created2018-12-20T14:10:53Z
dc.date.issued2005
dc.identifierLinear Algebra and Its Applications, Volumen 404, Issue 1-3, 2018, Pages 389-400
dc.identifier00243795
dc.identifier10.1016/j.laa.2005.03.009
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154469
dc.description.abstractWe shall study representations of algebras over fields of characteristic ≠ 2, 3 of dimension 4 which satisfy the identities xy - yx = 0, and ((xx)x)x = 0. In these algebras the multiplication operator was shown to be nilpotent by [I. Correa, R. Hentzel, A. Labra, On the nilpotence of the multiplication operator in commutative right nilalgebras, Commun. Alg. 30 (7) (2002) 3473-3488]. In this paper we use this result in order to prove that there are no non-trivial one-dimensional representations, there are only reducible two-dimensional representations, and there are irreducible and reducible three-dimensional representations. © 2005 Elsevier Inc. All rights reserved.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceLinear Algebra and Its Applications
dc.subjectIrreducible representations
dc.subjectNilpotent
dc.subjectRepresentations
dc.subjectRight nilalgebra
dc.titleOn representations on right nilalgebras of right nilindex four
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución