dc.creatorLiz, Eduardo
dc.creatorPinto Jiménez, Manuel
dc.creatorTkachenko, Victor
dc.creatorTrofimchuk, Sergei
dc.date.accessioned2018-12-20T14:10:50Z
dc.date.available2018-12-20T14:10:50Z
dc.date.created2018-12-20T14:10:50Z
dc.date.issued2005
dc.identifierQuarterly of Applied Mathematics, Volumen 63, Issue 1, 2018, Pages 56-70
dc.identifier0033569X
dc.identifier10.1090/S0033-569X-05-00951-3
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154446
dc.description.abstractFor a family of single-species delayed population models, a new global stability condition is found. This condition is sharp and can be applied in both monotone and nonmonotone cases. Moreover, the consideration of variable or distributed delays is allowed. We illustrate our approach on the Mackey-Glass equations and the Lasota-Wazewska model. © 2005 Brown University.
dc.languageen
dc.publisherAmerican Mathematical Society
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceQuarterly of Applied Mathematics
dc.subjectDelay differential equations
dc.subjectGlobal stability
dc.subjectLasota-Wazewska model
dc.subjectMackey-Glass equations
dc.subjectSchwarz derivative
dc.titleA global stability criterion for a family of delayed population models
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución