dc.creatorArenas Carmona, Luis
dc.date.accessioned2018-12-20T14:08:15Z
dc.date.available2018-12-20T14:08:15Z
dc.date.created2018-12-20T14:08:15Z
dc.date.issued2011
dc.identifierArchiv der Mathematik, Volumen 97, Issue 2, 2018, Pages 105-113
dc.identifier0003889X
dc.identifier10.1007/s00013-011-0279-5
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154150
dc.description.abstractWe give some conditions under which no two non-conjugate projective representations, in an algebra, of a given group can become conjugate over a separable extension of the base field. In particular, we show this is always the case for groups with trivial abelianization. © 2011 Springer Basel AG.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceArchiv der Mathematik
dc.subjectCentral simple algebras
dc.subjectFinite subgroups
dc.subjectGalois Cohomology
dc.titleProjective representations in algebras and cohomology
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución