dc.creator | Kohnen, Winfried | |
dc.creator | Martin, Yves | |
dc.date.accessioned | 2018-12-20T14:06:48Z | |
dc.date.available | 2018-12-20T14:06:48Z | |
dc.date.created | 2018-12-20T14:06:48Z | |
dc.date.issued | 2014 | |
dc.identifier | International Journal of Number Theory, Volumen 10, Issue 8, 2018, Pages 1921-1927 | |
dc.identifier | 17930421 | |
dc.identifier | 10.1142/S1793042114500626 | |
dc.identifier | https://repositorio.uchile.cl/handle/2250/154002 | |
dc.description.abstract | © World Scientific Publishing Company. Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(Z) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes σ the sequence (a(pjn))n0 has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over Q. | |
dc.language | en | |
dc.publisher | World Scientific Publishing Co. Pte Ltd | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Chile | |
dc.source | International Journal of Number Theory | |
dc.subject | Fourier coefficients | |
dc.subject | Modular forms | |
dc.subject | Sign changes | |
dc.title | Sign changes of Fourier coefficients of cusp forms supported on prime power indices | |
dc.type | Artículo de revista | |