dc.creatorKohnen, Winfried
dc.creatorMartin, Yves
dc.date.accessioned2018-12-20T14:06:48Z
dc.date.available2018-12-20T14:06:48Z
dc.date.created2018-12-20T14:06:48Z
dc.date.issued2014
dc.identifierInternational Journal of Number Theory, Volumen 10, Issue 8, 2018, Pages 1921-1927
dc.identifier17930421
dc.identifier10.1142/S1793042114500626
dc.identifierhttps://repositorio.uchile.cl/handle/2250/154002
dc.description.abstract© World Scientific Publishing Company. Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(Z) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes σ the sequence (a(pjn))n0 has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over Q.
dc.languageen
dc.publisherWorld Scientific Publishing Co. Pte Ltd
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceInternational Journal of Number Theory
dc.subjectFourier coefficients
dc.subjectModular forms
dc.subjectSign changes
dc.titleSign changes of Fourier coefficients of cusp forms supported on prime power indices
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución