dc.creatorImamoglu, Özlem
dc.creatorMartin, Yves
dc.date.accessioned2018-12-20T14:05:55Z
dc.date.available2018-12-20T14:05:55Z
dc.date.created2018-12-20T14:05:55Z
dc.date.issued2004
dc.identifierMathematische Nachrichten, Volumen 273,
dc.identifier0025584X
dc.identifier10.1002/mana.200310197
dc.identifierhttps://repositorio.uchile.cl/handle/2250/153818
dc.description.abstractIn this article we study a Rankin-Selberg convolution of n complex variables for pairs of degree n Siegel cusp forms. We establish its analytic continuation to ℂn, determine its functional equations and find its singular curves. Also, we introduce and get similar results for a convolution of degree n Jacobi cusp forms. Furthermore, we show how the relation of a Siegel cusp form and its Fourier-Jacobi coefficients is reflected in a particular relation connecting the two convolutions studied in this paper. As a consequence, the Dirichlet series introduced by Kalinin [7] and Yamazaki [19] are obtained as particular cases. As another application we generalize to any degree the estimate on the size of Fourier coefficients given in [14]. © 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
dc.languageen
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceMathematische Nachrichten
dc.subjectDirichlet series
dc.subjectSiegel modular forms
dc.titleOn convolutions of Siegel modular forms
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución