Artículo de revista
Purinergic receptor stimulation induces calcium oscillations and smooth muscle contraction in small pulmonary veins
Fecha
2018-07Registro en:
Journal of Physiology, 596(13). Julio, 2018. 2491–2506 pp
0022-3751
10.1113/JP274731
Autor
Henríquez, Mauricio
Fonseca, Marcelo
Pérez-Zoghbi, José
Institución
Resumen
The small pulmonary veins (SPVs) may play a role in the development of pulmonary hypertension and pulmonary oedema via active changes in SPV diameter, mediated by vascular smooth muscle cell (VSMC) contraction. However, the excitation-contraction coupling mechanisms during vasoconstrictor stimulation remain poorly understood in these veins. We used rat precision-cut lung slices and phase-contrast and confocal microscopy to investigate dynamic changes in SPV cross-sectional luminal area and intracellular Ca2+ signalling in their VSMCs. We found that the SPV (similar to 150 mu m in diameter) contract strongly in response to extracellular ATP and other vasoconstrictors, including angiotensin-II and endothelin-1. ATP-induced SPV contraction was fast, concentration-dependent, completely reversible upon ATP washout, and inhibited by purinergic receptor antagonists suramin and AR-C118925 but not by MRS2179. Immunofluorescence showed purinergic P2Y2 receptors expressed in SPV VSMCs. ATP-induced SPV contraction was inhibited by phospholipase C beta inhibitor U73122 and accompanied by intracellular Ca2+ oscillations in the VSMCs. These Ca2+ oscillations and SPV contraction were inhibited by the inositol 1,4,5-trisphosphate receptor inhibitor 2-APB but not by ryanodine. The results of the present study suggest that ATP-induced vasoconstriction in SPVs is associated with the activation of purinergic P2Y2 receptors in VSMCs and the generation of Ca2+ oscillations.