dc.creatorAdly, Samir
dc.creatorNacry, Florent
dc.creatorThibault, Lionel
dc.date.accessioned2018-11-15T17:08:06Z
dc.date.available2018-11-15T17:08:06Z
dc.date.created2018-11-15T17:08:06Z
dc.date.issued2018-04
dc.identifierEsaim-Control Optimisation and Calculus of Variations Volumen: 24 Número: 2 Páginas: 677-708
dc.identifier10.1051/cocv/2017052
dc.identifierhttps://repositorio.uchile.cl/handle/2250/152638
dc.description.abstractIn this paper, we first investigate the prox-regularity behaviour of solution mappings to generalized equations. This study is realized through a nonconvex uniform Robinson Ursescu type theorem. Then, we derive new significant results for the preservation of prox-regularity under various and usual set operations. The role and applications of prox-regularity of solution sets of generalized equations are illustrated with dynamical systems with constraints.
dc.languageen
dc.publisherEDP Sciences
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceEsaim-Control Optimisation and Calculus of Variations
dc.subjectVariational analysis
dc.subjectProx-regular set
dc.subjectMetric regularity
dc.subjectGeneralized equation
dc.subjectRobinson-Ursescu Theorem
dc.subjectVariational inclusion
dc.subjectNonsmooth dynamics
dc.titleProx-regularity approach to generalized equations and image projection
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución