Artículos de revistas
Partitioned Heronian means based on linguistic intuitionistic fuzzy numbers for dealing with multi attribute group decision making
Fecha
2018Registro en:
Applied Soft Computing, 62 (2018): 395–422
Autor
Liu, Peide
Liu, Junlin
Merigó Lindahl, José
Institución
Resumen
Heronian mean (HM) operator has the advantages of considering the interrelationships between parame-ters, and linguistic intuitionistic fuzzy number (LIFN), in which the membership and non-membership areexpressed by linguistic terms, can more easily describe the uncertain and the vague information existingin the real world. In this paper, we propose the partitioned Heronian mean (PHM) operator which assumesthat all attributes are partitioned into several parts and members in the same part are interrelated whilein different parts there are no interrelationships among members, and develop some new operationalrules of LIFNs to consider the interactions between membership function and non-membership function,especially when the degree of non-membership is zero. Then we extend PHM operator to LIFNs based onnew operational rules, and propose the linguistic intuitionistic fuzzy partitioned Heronian mean (LIFPHM)operator, the linguistic intuitionistic fuzzy weighted partitioned Heronian mean (LIFWPHM) operator,the linguistic intuitionistic fuzzy partitioned geometric Heronian mean (LIFPGHM) operator and linguis-tic intuitionistic fuzzy weighted partitioned geometric Heronian mean (LIFWPGHM) operator. Further,we develop two methods to solve multi-attribute group decision making (MAGDM) problems with thelinguistic intuitionistic fuzzy information. Finally, we give some examples to verify the effectiveness oftwo proposed methods by comparing with the existing