dc.creatorChen, Huyuan
dc.creatorFelmer Aichele, Patricio
dc.creatorYang, Jianfu
dc.date.accessioned2018-07-24T22:34:25Z
dc.date.available2018-07-24T22:34:25Z
dc.date.created2018-07-24T22:34:25Z
dc.date.issued2018
dc.identifierAnn. I.H.Poincaré–AN 35 (2018): 729–750
dc.identifier10.1016/j.anihpc.2017.08.001
dc.identifierhttps://repositorio.uchile.cl/handle/2250/150234
dc.description.abstractIn this paper, we study the elliptic problem with Dirac mass { -Delta u = Vu(p) + k delta(0) in R-N, (1) lim(vertical bar x vertical bar ->+infinity) u(x) = 0, where N > 2, p > 0, k > 0, delta(0) is the Dirac mass at the origin and the potential V is locally Lipchitz continuous in R-N \ {0}, with non-empty support and satisfying 0 <= V(x) <= sigma(1)/vertical bar x vertical bar(a0)(1 +vertical bar x vertical bar (a infinity-a0)), with a(0) < N, a(0) < a(infinity) and sigma(1) > 0. We obtain two positive solutions of (1) with additional conditions for parameters on a(infinity), a(0), p and k. The first solution is a minimal positive solution and the second solution is constructed via Mountain Pass Theorem.
dc.languageen
dc.publisherElsevier
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/3.0/cl/
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Chile
dc.sourceAnnales de L Institut Henri Poincare-Analyse Non Lineaire
dc.subjectWeak solution
dc.subjectMountain Pass theorem
dc.subjectDirac mass
dc.titleWeak solutions of semilinear elliptic equation involving Dirac mass
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución